CRYSTAL FIELD THEORY IN OCTAHEDRAL COMPLEXES

Dr. SWAPNA SANKAR NAYAK DEPARTMENT OF CHEMISTRY

S. B. WOMEN'S autonomous COLLEGE, CUTTACK

> INTRODUCTION

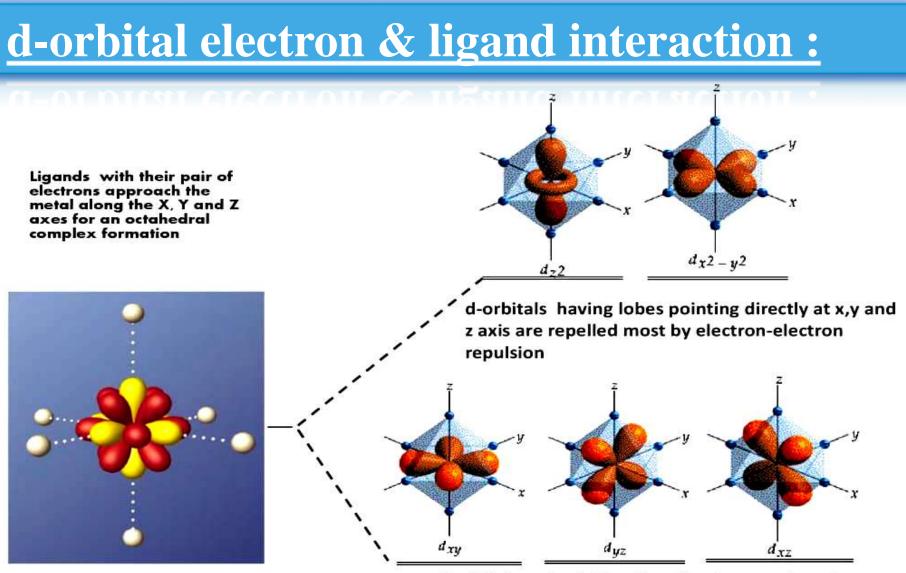
> POSTULATES

> CRYSTAL FIELD SPLITTING IN OCTAHEDRAL COMPLEX

- > APPLICATIONS OF CFT
- LIMITATIONS
- > REFERENCE

INTRODUCTION

- Crystal field theory was developed by physicists Hans Bethe & John Hansbrouck Van Vleck in 1930s.
- Crystal field theory assumes that the interaction between the metal ion d-orbitals & ligands surrounded by it is purely electrostatic.
- It explains many important properties of transition metal complexes including their colours, magnetism, structures, stability etc.

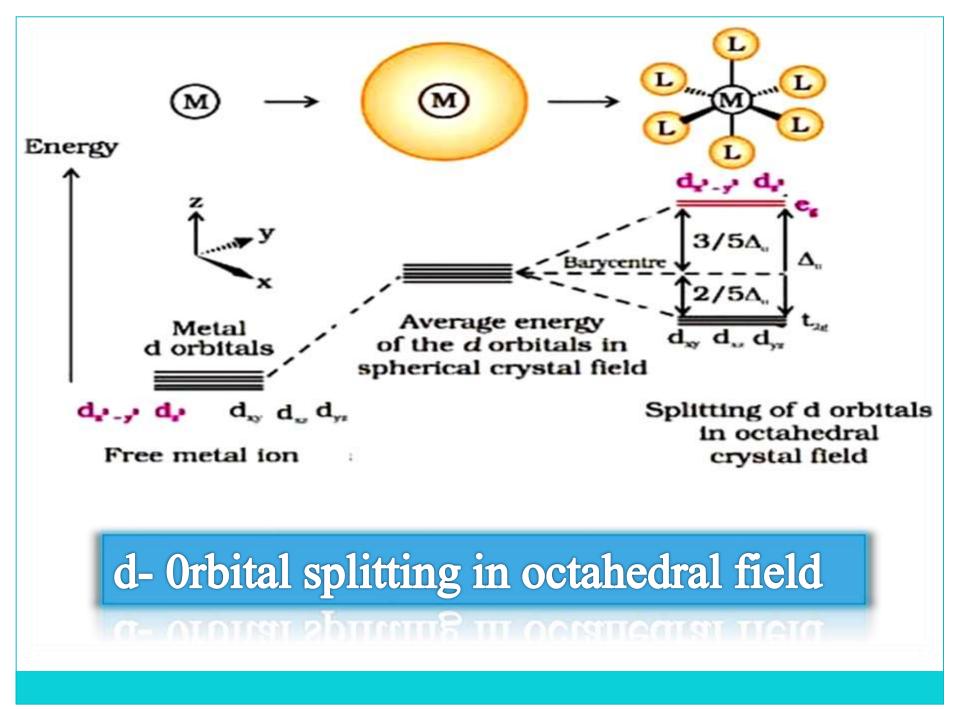

POSTULATES

- The metal ion and the ligands are considered as point charges or point dipoles .
- The metal d-orbital electrons maintain their wave mechanical properties .
- The interactions between the metals and ligands are purely electrostatic; the electrostatic field they generate is known as crystal field .
- In the presence of crystal field the degeneracy of d-orbitals may be perturbed & the degeneracy is lifted to stabilise the co-ordination compound.

CRYSTAL FIELD SPLITTING INOCTAHEDRAL COMPLEXES

- In an octahedral co-ordination compound, there are six ligands surrounding the metal ion.
- There will be repulsion between the electrons in metal d-orbitals & electrons of ligands

Thus $dx^2-y^2 \& dz^2$ orbitals (eg set) which point towards the axes along the direction of ligands experience more repulsion and will be raised energy and the dxy , dyz & dxz orbitals (t_{2g} set) which are directed between the axes will be lowered in energy. This is to maintain the barycentre .



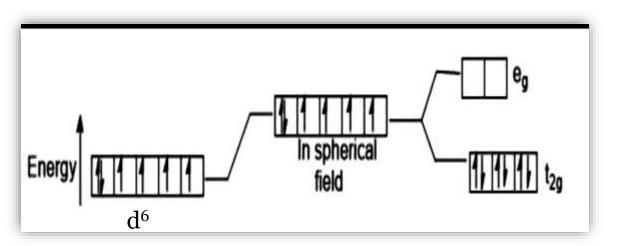
d-orbitals not pointing directly at x, y and z axis are stabilized to maintain the overall energy same

Splitting Of d-orbitals :

- The degeneracy of d-orbitals is removed because of metal electron & ligand electron in octahedral complex produce three orbitals of lower energy (t₂g set) and two orbitals of higher energy (eg set).
- This splitting of the degenerate levels due to the presence of ligands in a definite geometry is called crystal field splitting.
- The energy separation is denoted by 10Dq.
- The energy of two eg orbitals will increased by 0.6 Dq & that of t₂g will decreased by 0.4 Dq.

Thus the eg set of orbitals destabilised while the t_2 gset of orbitals are stabilised to maintain the barycentre .

APPLICATIONS OF CFT


1. <u>COLOUR OF COMPLEXES</u>

Crystal field theory explains why certain metal complexes exhibit vivid colours .

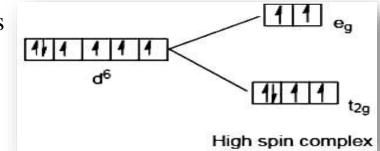
 When the transition metal ion is in solution being surrounded by solvent molecules, the degeneracy is destroyed. The distorted degeneracy bring about colour change.

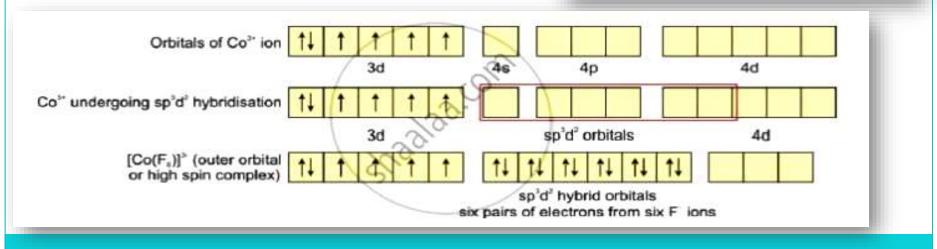
The non-degeneracy causes energy different between the non-equivalent d-orbitals in metal complex. As a result of which the excitation of an electron from a lower to higher level takes place by absorption of visible light & the compound imparts colour. <u>Ex</u>: $K_4[Fe(CN)_6]$ appears pale yellow because the low spin complex absorbs higher energy violet photons .

Here, Fe has +2 oxidation state . Fe²⁺ has low spin d-orbital complex , in the presence of $6CN^-$ strong field ligands

TASSIUM FERROCYANIDE

Colour of Potassium ferrocyanide


2. MAGNETIC PROPERTY


Crystal field theory helps in determining the magnetic property of metal complex, by analysing the distribution of electrons in the d-orbitals, one can predict if a complex will be paramagnetic (with unpaired electron) & diamagnetic (without unpaired electron).

<u>Ex</u>: $[CoF_6]^{3-}$ is paramagnetic & contains four unpaired electrons .

It is a high spin outer orbital complex .

Here, Co has +3 oxidation state.

The stability of a complex is determined by the crystl field splitting energy (CFSE) . A higher CFSE value indicates a more stable and kinetically inert complex .

Some factors that affect the stability of a complex :

- <u>Charge on metal ion</u> A higher charge on metal ion makes the complex more stable.
- <u>Size of metal ion</u> The stability of the complex decreases as the metal ion increases .
- <u>Chelate rings</u> Chelate rings increases the stability of the complex through the chelate ring .
 <u>Nature of ligand</u> The higher the basic strength of the ligand the more stable is the complex .

4. CATALYSIS

Industrial Catalysts: Many industrial processes involve metal complexes as catalyst. CFT helps in understanding how these catalysts work by providing insights into the electronic structure and reactivity of the metal centre.

Biocatalysis: In biochemical systems, such as enzyme catalysis CFT can explain the role of metal ions catalysing reactions .

5. ENVIRONMENTAL CHEMISTRY

CFT is used to design processes & materials for the removal or recovery of metal ions from environmental sample such as water treatment system .

•Ignoring ligand-ligand interactions : CFT primarily focuses on the interaction between the central metal ion & surroundind ligands, without considering interaction between the ligand-ligand themselves.

• CFT treats metal ligand bonding purely in terms of electrostatic interaction , neglecting the covalent character of metal-ligand bond.

• CFT doesnot explicitly address the detailed effects of electronelectron repulsion within the metal ion , which can influence the actual energy levels & electronic configuration.

REFERENCE

Lee J.D., Concise Inorganic Chemistry, Wiley India, 5th Edn.,2008.

Das Asim K., Fundamental of Inorganic Chemistry, Vol.II, CBS Publications, 2nd Ed. 2010.

Puri Sharma, Kalia, Principles of Inorganic Chemistry, Vishal Pub. Co., 33rd ed. 2017.

Pradeep's Inorganic Chemistry, Vol.I & II, Universal Book seller, 14th Ed. 2017.

